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1
Holomorphic Functions of Many Variables

In this chapter,we recall themainproperties of holomorphic functionsof several
complex variables. These results will be used freely in the remainder of the
text, and will enable us to introduce the notions of a complex manifold, and a
holomorphic function defined locally on a complex manifold.
TheC-valued holomorphic functions of the complex variablesz1, . . . , zn are

thosewhose differential isC-linear, or equivalently, thosewhich are annihilated
by the operators∂

∂zi
. It follows immediately from this definition that the set of

holomorphic functions forms a ring, and that the composition of two holo-
morphic functions is holomorphic. The following theorem, however, requires
a certain amount of work.

Theorem 1.1 The holomorphic functions of the complex variables z1, . . . , zn
are complex analytic, i.e. they locally admit expansions as power series in the
variables zi .

This result is an easy consequence of Cauchy’s formula in several variables,
which is a generalisation of the formula

f (z) = 1

2iπ

∫
|ζ |=1

f (ζ )

ζ − z
dζ,

where f is a holomorphic function defined in a disk of radius> 1, and|z| < 1.
Cauchy’s formula can also be used to prove Riemann’s theorem of analytic

continuation:

Theorem 1.2 Let f be a bounded holomorphic function on the pointed disk.
Then f extends to a holomorphic function on the whole disk.

And also Hartogs’ theorem:

21



22 1 Holomorphic Functions of Many Variables

Theorem 1.3 Let f be a holomorphic function defined on the complement
of the subset F defined by the equations z1 = z2 = 0 in a ball B ofCn, n ≥ 2.
Then f extends to a holomorphic function on B.

(More generally, this theorem remains true ifF is an analytic subset of codi-
mension 2, but we only need the present version here.) Hartogs’ theorem is
used more in complex geometry than Riemann’s theorem, because it does not
impose any conditions on the functionf . More generally, it enables us to show
that a holomorphic section of a complex vector bundle over a complex man-
ifold is defined everywhere if it is defined on the complement of an analytic
subset of codimension 2. This is classically used to show the invariance of the
“plurigenera” under birational transformations.
We conclude this chapter with a proof of an explicit formula for the local

solution of the equation

∂ f

∂z
= g,

whereg is a differentiable function definedonanopenset ofC. Thiswill be used
in the following chapter, to prove the local exactness of the Dolbeault complex.
A good reference for the material in this chapter is H¨ormander (1979).

1.1 Holomorphic functions of one variable

1.1.1 Definition and basic properties

LetU ⊂ C ∼= R
2 be an open set, andf : U → C a C1 map. Letx, y be the

linear coordinates onR2 such thatz = x + iy is the canonical linear complex
coordinate onC. Consider the complex-valued differential form

dz= dx+ idy ∈ HomR (TU , C) ∼= �U,R ⊗ C.

Clearlydzand its complex conjugatedz form a basis of�U,R ⊗ C overC at
every point ofU , since

2dx = dz+ dz, 2idy = dz− dz. (1.1)

The complex differential formd f ∈HomR (TU , C) can thus be uniquely
written

d fu = fz(u)dz+ fz(u)dz, (1.2)

where the complex-valued functionsu �→ fz(u), u �→ fz(u) are continuous.

Definition 1.4 We write fz = ∂ f
∂z and fz = ∂ f

∂z .
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By (1.1) we obviously have

∂ f

∂z
= 1

2

(
∂ f

∂x
− i

∂ f

∂y

)
,

∂ f

∂z
= 1

2

(
∂ f

∂x
+ i

∂ f

∂y

)
. (1.3)

We can also consider the decomposition (1.2) as the decomposition ofd f ∈
HomR(C, C) intoC-linear andC-antilinear parts:

Lemma 1.5We have∂ f
∂z (u) = 0 if and only if theR-linear map

d fu : TU,u
∼= C → C

is C-linear, i.e. is equal to multiplication by a complex number, which is then
equal to∂ f

∂z (u).

Proof Because∂
∂y = i ∂

∂x for the natural complex structure onTU,u, the mor-
phismd fu : TU,u → C isC-linear if and only if we have

∂ f

∂y
(u) = i

∂ f

∂x
(u),

and by (1.3), this is equivalent to∂ f
∂z (u) = 0. Moreover, we then haved fu =

∂ f
∂z (u)dz, i.e.

d fu

(
∂

∂x

)
= ∂ f

∂z
(u), d fu

(
∂

∂y

)
= i

∂ f

∂z
(u),

which proves the second assertion, since the natural isomorphismTU,u
∼= C

sends ∂
∂x to 1. �

Definition 1.6 The function f is said to be holomorphic if it satisfies one of the
equivalent conditions of lemma 1.5 at every point of U.

Lemma 1.7 If f is holomorphic and does not vanish on U, then1f is holomor-
phic. Similarly, if f, g are holomorphic, f g and f+ g and g◦ f (when g is
defined on the image of f ) are all holomorphic.

Proof Themapz �→ 1
z is holomorphic onC

∗, so that the first assertion follows
from the last one. Furthermore, ifg and f areC1 andg is defined on the image
of f , theng ◦ f is C1 and we have

d(g ◦ f )u = dgf (u) ◦d fu.
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If dgf (u) andd fu are bothC-linear for the natural identifications ofTC,u, TC, f (u)

andTC,g◦ f (u) with C, thend(g ◦ f )u is alsoC-linear, and the last assertion is
proved. The other properties are proved similarly. �

In particular, we will use the following corollary.

Corollary 1.8 If f is holomorphic on U, the map g defined by

g(z) = f (z)

z− a

is holomorphic on U− {a}.

1.1.2 Background on Stokes’ formula

Letα be aC1 differentialk-form on ann-dimensionalmanifoldU (cf. definition
2.3andsection2.1.2 in the followingchapter). Ifx1, . . . , xn are local coordinates
onU , we can write

α =
∑
I

αI dxI ,

where the indicesI parametrise the totally ordered subsetsi1 < · · · < i k of
{1, . . . ,n}, with dxI = dxi1 ∧ · · · ∧ dxik . We can then define the continuous
(k+ 1)-form

dα =
∑
I ,i

∂αI

∂xi
dxi ∧ dxI ; (1.4)

we check that it is independent of the choice of coordinates. This follows from
the more general fact that ifV is anm-dimensional manifold andφ : V → U
is a C1 map given in local coordinates byφ∗xi := xi ◦ φ = φi (y1, . . . , ym),
then for every differential formα = ∑

I αI dxi1 ∧ · · · ∧ dxik , we can define its
inverse image

φ∗α =
∑
I

αI ◦ φ dφi1 ∧ · · · ∧ dφi k .

Moreover, ifφ is C2, this image inverse satisfies
d(φ∗α) = φ∗(dα),

where the coordinatesyi (and the formulae (1.4)) are used on the left, while the
coordinatesxi are used on the right.
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A C0 differential k-form α can be integrated over the compact oriented
k-dimensional submanifolds ofU with boundary, or over the image of such
manifolds under differentiable maps.
To begin with, let us recall that ak-dimensional manifold with boundary

is a topological space covered by open setsUi which are homeomorphic, via
certain mapsφi , to open subsets ofRk or to ]0,1] × V , whereV is an open
set ofRk−1. We require the transition functionsφi ◦ φ−1

j to be differentiable on
φ j (Ui ∩Uj ). Whenφ j (Ui ∩Uj ) contains points on the boundary ofUj , i.e. is
locally isomorphic to ]0,1]× V , whereV is an open set ofRk−1, φi (Ui ∩Uj )
must also be locally isomorphic to ]0,1]×V ′, whereV ′ is an open set ofRk−1,
and the differentiable mapφi ◦ φ−1

j must locally extend to a diffeomorphism
of a neighbourhood inRk of ]0,1] × V to a neighbourhood of ]0,1] × V ′,
inducing a diffeomorphism from 1×V to 1×V ′. In particular, the boundary of
M , which we denote by∂M and which is defined, with the preceding notation,
as the union of theφ−1

i (1×V), is a closed set ofM which possesses an induced
differentiable manifold structure.
The manifold with boundaryM is said to be oriented if the diffeomorphisms

φi ◦ φ−1
j have positive Jacobian. The boundary ofM is then also naturally

oriented by the charts 1× V , whereV is an open set ofRk−1 as above, since
the induced transition diffeomorphisms

φi ◦ φ−1
j |1×V : V → V ′

also have positive Jacobian.
If M is a k-dimensional manifold with boundary andφ : M → U is aC1

differentiable map (along the boundary ofM , which is locally isomorphic to
]0,1] × V , we requireφ to extend locally to aC1 map on a neighbourhood
]0,1+ ε[ × V of {1} × V), then for every continuousk-form α, we have the
inverse imageβ = φ∗α defined above, which is a continuousk-form onM . If
moreoverM is oriented and compact, such a form can be integrated overM as
follows. Let fi be a partition of unity subordinate to a covering ofM by open
setsUi as above,whichwemay assume to be diffeomorphic to ]0,1]× ]0,1[k−1

or to ]0,1[k. Thenβ = ∑
i fiβ, and the formfiβ onUi extends to a contin-

uous form on [0,1]k. Setting fiβ = gi (x1, . . . , xk)dx1 ∧ · · · ∧ dxk, we then
define

∫
M

β =
∑
i

∫
Ui

fiβ

∫
Ui

fiβ =
∫ 1

0
· · ·

∫ 1

0
gi (x1, . . . , xk)dx1 . . .dxk.



26 1 Holomorphic Functions of Many Variables

The change of variables formula for multiple integrals and the fact that the
authorised variable changes have positive Jacobians ensure that

∫
M β is well-

defined independently of the choice of oriented charts, i.e. of local orientation-
preserving coordinates.

Remark 1.9 If we change the orientation of M, i.e. if we compose all the
charts with local diffeomorphisms ofR

k with negative Jacobians, the integrals∫
M φ∗α change sign. This follows from the change of variables formula for
multiple integrals, which uses only the absolute value of the Jacobian, whereas
the change of variables formula for differential forms of maximal degree uses
the Jacobian itself.

Suppose now thatα is aC1 (k−1)-form onU . Then, asφ|∂M is differentiable
and∂M is a compact oriented manifold of dimensionk − 1, we can compute
the integral

∫
∂M φ∗α. Moreover, we can integrate the differentialφ∗dα = dφ∗α

overM . We then have

Theorem 1.10 (Stokes’ formula) The following equality holds:

∫
M

φ∗dα =
∫

∂M
φ∗α. (1.5)

In particular, if dα = 0, we have
∫
∂M φ∗α = 0.

Proof Using a partition of unity, we are reduced to showing (1.5) whenφ∗α
has compact support in an open setUi of M as above. This follows immediately
from the formula (1.4) for the differential, and the equality

∫ 1

0
f ′(t)dt = f (1)− f (0),

which holds for anyC1 function f . �

Wewill useStokes’ formulavery frequently throughout this text. Inparticular,
it will enable us to pair the de Rham cohomology with the singular homology.
The following consequence will be particularly useful.

Corollary 1.11 If α is a differential form of degree n− 1 on a compact n-
dimensional manifold without boundary, then

∫
M dα = 0.
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1.1.3 Cauchy’s formula

We propose to apply Stokes’ formula (1.5), using the following lemma.

Lemma 1.12 Let f : U → C be a holomorphicmap. Then the complex differ-
ential form f dz is closed.

Proof We haved( f dz) = d( f dx+ i f dy) = ∂ f
∂ydy∧ dx+ i ∂ f

∂x dx∧ dy. Thus
∂ f
∂y = i ∂ f

∂x implies thatd( f dz) = 0. �

By corollary 1.8, we thus also have the following.

Corollary 1.13 If f is holomorphic onU, the differential formf
z−z0dz is closed

on U− {z0}.

Suppose now thatU contains a closed diskD. For everyz0 ∈ D, let Dε be
the open disk of radiusε centred atz0 which is contained inD for sufficiently
small ε. ThenD − Dε is a manifold with boundary, whose boundary is the
union of the circle∂D and the circle of centrez0 and radiusε, the first with its
natural orientation, the second with the opposite orientation. For holomorphic
f , Stokes’ formula and corollary 1.1.3 then give the equality

1

2iπ

∫
∂D

f (z)

z− z0
dz= 1

2iπ

∫
|z−z0|=ε

f (z)

z− z0
dz. (1.6)

Furthermore, we have the following.

Lemma 1.14 If f is a function which is continuous at z0, then

lim
ε→0

1

2iπ

∫
|z−z0|=ε

f (z)

z− z0
dz= f (z0).

Proof The circleof radiusε and centrez0 is parametrised by the mapγ : t �→
z0+ εe2iπ t on the segment [0,1]. We haveγ ∗

(
1
2iπ

f (z)
z−z0dz

)
= f (z0+ εe2iπ t )dt.

Thus,

1

2iπ

∫
|z−z0|=ε

f (z)

z− z0
dz=

∫ 1

0
f (z0 + εe2iπ t )dt. (1.7)

But as f is continuous atz0, the functionsfε(t) = f (z0 + εe2iπ t ) converge
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uniformly, asε tends to 0, to the constant function equal tof (z0). We thus have

lim
ε→0

∫ 1

0
f (z0 + εe2iπ t )dt =

∫ 1

0
f (z0)dt = f (z0).

�
Combining lemma 1.14 and equality (1.6), we now have

Theorem 1.15 (Cauchy’s formula) Let f be a holomorphic function on U and
D a closed disk contained in U. Then for every point z0 in the interior of D,
we have the equality

f (z0) = 1

2iπ

∫
∂D

f (z)

z− z0
dz. (1.8)

1.2 Holomorphic functions of several variables

1.2.1 Cauchy’s formula and analyticity

LetU be an open set ofCn, and let f : U → C be aC1map. Foru ∈ U , we have
a canonical identificationTU,u

∼= C
n. We can thus generalise the notion of a

holomorphic function to higher dimensions.

Definition 1.16 The function f is said to be holomorphic if for every u∈ U,
the differential

d fu ∈ Hom(TU,u, C) ∼= Hom(Cn, C)

isC-linear.

It is easy to prove that lemma 1.7 remains true in higher dimensions. Further-
more, we have the three following characterisations of holomorphic functions.

Theorem 1.17The following three properties are equivalent for aC1 function
f :
(i) f is holomorphic.
(ii) In the neighbourhood of each point z0 ∈ U, f admits an expansion as a
power series of the form

f (z0 + z) =
∑
I

αI z
I , (1.9)

where I runs through the set of the n-tuples of integers(i1, . . . , i n) with ik ≥ 0,
and zI := zi11 · · · zinn . The coefficients of the series (1.9) satisfy the following
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property: there exist R1 > 0, . . . , Rn > 0 such that the power series

∑
I

|αI |r I

converges for every r1 < R1, . . . , rn < Rn.
(iii) If D = {(ζ1, . . ., ζn)| |ζi − ai | ≤ αi } is a polydisk contained in U, then for
every z= (z1, . . ., zn) ∈ D0, we have the equality

f (z) =
(

1

2iπ

)n ∫
|ζi−ai |=αi

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
. (1.10)

In thepreceding formula, the integral is takenover aproduct of circles, equipped
with the orientation which is the product of the natural orientations.

Remark 1.18 Because of property (ii), holomorphic functions are also known
as complex analytic functions.

Proof The implications (iii)⇒(ii)⇒(i) are obvious: indeed, (iii)⇒(ii) is ob-
tained, forζ in the product of circles{ζ | |ζi − ai| = αi } andz in the interior of
D, by expanding the functions

f (ζ )

(ζ1 − z1) · · · (ζn − zn)
= f (ζ )

((ζ1 − a1) − (z1 − a1)) · · · ((ζn − an) − (zn − an))

as a power series inz1 − a1, . . . , zn − an whose coefficients are continuous
functions ofζ . The uniform convergence inζ of this expansion then shows
that the integral (1.10) admits the corresponding power series expansion in
z1 − a1, . . . , zn − an, so that (ii) holds for the function defined by (1.10).
(ii)⇒(i) follows from the fact that every polynomial function ofz1, . . . , zn

is holomorphic, and that as the series (1.9) is a uniform limit of polynomials
whose derivatives also converge uniformly, its differential is the limit of the
differentials of these polynomials. As the differential of each polynomial is
C-linear, the same holds for the series, which is thus also holomorphic.
It remains tosee that (i)⇒(iii),which isCauchy’s formula in several variables.

We can prove it by induction on the dimension, using Cauchy’s formula (1.8).
We can also directly apply Stokes’ formula, using the following analogue of
lemma 1.12.

Lemma1.19 If f is holomorphic, then thedifferential form f(z)dz1∧ · · · ∧dzn
is closed.
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Theproductof circles
∏

i {|ζi − zi|= ε} is contained inD for sufficiently smallε,
and homotopic inD − ⋃

i {ζ | ζi = zi } to the product of circles
∏

i {|ζi − ai | =
αi },whichmeans that thereexistsanorientedcompactmanifoldM ofdimension
n and a differentiable map

φ : [0,1]× M → D − ∪i {ζ | ζi = zi }
such thatφ|0×M is a diffeomorphism fromM to the first product of circles, and
φ|1×M is a diffeomorphism fromM to the second product of circles, the first
isomorphism being compatible with the orientations, and the second changing
the orientation. We then deduce from lemma 1.19 that ifβ = f (ζ ) dζ1

ζ1−z1 ∧· · ·∧
dζn

ζn−zn , the differential formφ∗β is closed on [0, 1]× M , and thus, by Stokes’
formula, satisfies ∫

∂[0,1]×M
φ∗β = 0.

For ε sufficiently small, this gives the equality
(

1

2iπ

)n ∫
|ζi−ai |=αi

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn

=
(

1

2iπ

)n ∫
|ζi−zi |=ε

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
.

But the limit of the right-hand term asε tends to 0 is equal tof (z) by the same
argument as above.

�

Remark 1.20 The homotopy must have values in D− ⋃
i {ζ | ζi = zi } and

not only in D, in order to guarantee that the formφ∗ f (ζ ) dζ1
ζ1−z1 ∧ · · · ∧ dζn

ζn−zn is
C1 in [0, 1]× M and to be able to apply Stokes’ formula.

1.2.2 Applications of Cauchy’s formula

Let us give some applications of theorem 1.17. To begin with, we have

Theorem 1.21 (The maximum principle ) Let f be a holomorphic function on
an open subset U ofCn. If | f | admits a local maximum at a point u∈ U, then
f is constant in the neighbourhood of this point.

Proof Let R1, . . . , Rn be positive real numbers such that for everyεi ≤ Ri ,
the polydiskDε· = {ζ ∈ C

n| |ζi − ui | ≤ εi } is contained inU . Then we have
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Cauchy’s formula

f (u) =
(

1

2iπ

)n ∫
|ζi−ui |=εi

f (ζ )
dζ1

ζ1 − u1
∧ · · · ∧ dζn

ζn − un
.

Parametrising the circles|ζi − ui | = εi by γi (t) = ui + εi e2iπ t , t ∈ [0,1], this
can be written as

f (u) =
∫ 1

0
· · ·

∫ 1

0
f (u1 + ε1e

2iπ t1, . . . ,un + εne
2iπ tn)dt1 · · ·dtn. (1.11)

But we have the inequality
∣∣∣∣
∫ 1

0
· · ·

∫ 1

0
f (u1 + ε1e

2iπ t1, . . . ,un + εne
2iπ tn)dt1 · · ·dtn

∣∣∣∣
≤

∫ 1

0
· · ·

∫ 1

0
| f (u1 + ε1e

2iπ t1, . . . ,un + εne
2iπ tn)| dt1 · · ·dtn, (1.12)

and equality holds if and only if the argument off (u1 + ε1e2iπ t1, . . . ,un +
εne2iπ tn) is constant, necessarily equal to that off (u) by (1.11).
Now, for sufficiently smallεi , we have by hypothesis

| f (u)| ≥ | f (u1 + ε1e
2iπ t1, . . . ,un + εne

2iπ tn)| .

Combining this inequality with (1.11) and (1.12), we obtain

| f (u)| ≤
∫ 1

0
· · ·

∫ 1

0
| f (u1 + ε1e

2iπ t1, . . .,un + εne
2iπ tn)| dt1 · · ·dtn

≤
∫ 1

0
· · ·

∫ 1

0
| f (u)| dt1 · · ·dtn = | f (u)| .

The equality of the two extreme terms then implies equality at every step; the
first equality implies that the argument off is constant, equal to that off (u)
on each product of circles as above, and the second equality shows that the
function f must have constant modulus equal to| f (u) |, for sufficiently small
εi . Letting themultiradiusof thepolydisksDε· vary,wehave thusshown thatf is
constant, equal tof (u) on a neighbourhood ofupossiblyminus the hyperplanes
{ζi = ui }, i.e. in fact constant in the neighbourhood ofu by continuity. �

Another essential application is the principle of analytic continuation.

Theorem 1.22Let U be a connected open set ofC
n, and f a holomorphic

function on U. If f vanishes on an open set of U, then f is identically zero.
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Proof This follows from the fact that by the characterisation (ii),f is in par-
ticular analytic (i.e. locally equal to the sum of its Taylor series). We can thus
apply the principle of analytic continuation tof . We recall that the latter is
shown by noting that iff is analytic, the open set consisting of the points in
whose neighbourhoodf vanishes is equal to the closed set consisting of the
points wheref and all its derivatives vanish. �

Let us now give some subtler applications of Cauchy’s formula (1.10) or its
generalisations. These theorems show that the possible singularities of a holo-
morphic function cannot exist unless the function is not bounded (Riemann),
and is not defined on the complement of an analytic subset of codimension 2
(Hartogs).

Theorem 1.23 (Riemann) Let f be a holomorphic function defined on
U − {z | z1 = 0}, where U is an open set ofCn. Then if f is locally bounded
on U, f extends to a holomorphic map onU.

Proof Since this is a local statement, it suffices to show that ifU contains a
polydiskD = {(z1, . . . , zn) ∈ C

n| |zi | ≤ ri } on which f is bounded, then we
can extendf to the points in the interior ofD. We propose to show that for a
point z in the interior ofD such thatz1 �= 0, Cauchy’s formula

f (z) =
(

1

2iπ

)n ∫
∂D

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
, (1.13)

where

∂D := {(ζ1, . . . , ζn)| |ζi | = ri , ∀i },
holds. Note that the right-hand term in (1.13) is well-defined, since the integra-
tion locus is contained in the locus of definition off .
Letε1 ∈ R, 0< ε1 < |z1| be such that the closed disk of radiusε1 and centre

z1 is contained in the disk{ζ | |ζ | < r1}. Then the polydisk
Dε1 := {(ζ1, . . . , ζn)| |ζ1 − z1| ≤ ε1, |zi | ≤ ri , i ≥ 2}

is contained inD − {ζ1 = 0}, so that Cauchy’s formula gives

f (z) =
(

1

2iπ

)n ∫
∂Dε1

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
, (1.14)

where

∂Dε1 := {(ζ1, . . . , ζn)| |ζ1 − z1| = ε1, |ζi | = ri , i ≥ 2}.
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Consider, also, the product of circles

∂D′
ε := {(ζ1, . . . , ζn)| |ζ1| = ε, |ζi | = ri , i ≥ 2}.

Then whenε is sufficiently small,∂D − ∂Dε1 − ∂D′
ε is the boundary of the

manifold

M = {(ζ1, . . . , ζn)| |ζ1 − z1| ≥ ε1, |ζ1| ≥ ε, |ζi | = ri , i ≥ 2},
which is contained inD and intersects neither the hypersurface{ζ1 = 0} nor
the hypersurfaces{ζi = zi }. Here, the signs given to the components of the
boundary are positive when the orientation as part of the boundary ofM co-
incides with the natural orientation, negative otherwise. Stokes’ formula and
(1.14) then give

f (z) =
(

1

2iπ

)n[ ∫
∂D

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn

−
∫

∂D′
ε

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn

]
.

The proof of formula (1.13) can then be finished using the following lemma.

Lemma 1.24When f is bounded, and for z such that z1 �= 0, |zi | < ri , we
have

lim
ε→0

∫
∂D′

ε

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
= 0. (1.15)

Proof Let us parametrise the product of circles∂D′
ε by [0,1]

n, (t1, . . . , tn) �→
(εe2iπ t1, r2e2iπ t2, . . . , rne2iπ tn). The integral (1.15) is thus equal to

(2iπ )n
∫ 1

0
· · ·

∫ 1

0
εr2 · · · rn

∏
j
e2iπ t j

f (εe2iπ t1, r2e2iπ t2, . . ., rne2iπ tn)

(εe2iπ t1 − z1) · · · (rne2iπ tn − zn)
dt1· · ·dtn.

As f is bounded, under the hypotheses onz, the integrand in this formula tends
uniformly to 0 withε, and thus the integral in the formula tends to 0 withε.

�

As Cauchy’s formula (1.13) is proved, Riemann’s extension theorem follows
immediately, since it is clear that the function defined by the right-hand term
in (1.13) extends holomorphically toD. �

To conclude this section, we will prove the following version of Hartogs’
extension theorem.
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Theorem 1.25Let U be an open set ofCn and f a holomorphic function on
U − {z | z1 = z2 = 0}. Then f extends to a holomorphic function on U.

Remark 1.26 This implies the more general theorem mentioned above, using
theorem 11.11, which proves that an analytic subset of codimension 2 can be
stratified into smooth analytic submanifolds of codimension at least 2; this
theorem will be proved in section 11.1.1.

Proof Let D be a closed polydisk contained inU :

D = {(z1, . . . , zn)| |zi | ≤ ri }.
Let z ∈ D − {ζ | ζ1 = ζ2 = 0}. As in the preceding proof, we will show that
Cauchy’s formula

f (z) =
(

1

2iπ

)n ∫
∂D

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
(1.16)

is satisfied, and this will enable us to conclude, as above, that the functionf (z),
given in the form of an integral as in (1.16), extends holomorphically toD. Let
ε1, ε2 be two positive real numbers, sufficiently small for the polydisk

Dε = {ζ | |ζi − zi | ≤ εi , i = 1, 2, |ζi | ≤ ri , i > 2}
to be contained inD − {ζ | ζ1 = ζ2 = 0}. Then we have Cauchy’s formula

f (z) =
(

1

2iπ

)n ∫
∂Dε

f (ζ )
dζ1

ζ1 − z1
∧ · · · ∧ dζn

ζn − zn
, (1.17)

where

∂Dε = {ζ | |ζi − zi | = εi , i = 1, 2, |ζi | = ri , i > 2}.
It thus suffices to show that∂D − ∂Dε is a boundary in

D − ({ζ | ζ1 = ζ2 = 0} ∪
⋃

i
{ζ | ζi = zi }),

in order to apply Stokes’ formula and conclude that (1.16) holds.
Let α1(t), α2(t), t ∈ [0,1], be two positive-valued differentiable functions

such thatαi (1)= εi , αi (0)= ri . For everyt ∈ [0,1], let

∂Dt = {ζ | |ζi − tzi | = αi (t), i = 1, 2, |ζi | = ri , i > 2}.

Lemma 1.27 For a suitable choice of functionsα1, α2, ∂Dt is contained in

D − ({ζ | ζ1 = ζ2 = 0} ∪
⋃

i
{ζ | ζi = zi })

for every t∈ [0,1].
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Proof Firstly, ∂Dt still lies in D if αi (t) + t |zi | ≤ ri , i = 1, 2. Moreover,
∂Dt still lies in D − ⋃

i {ζ | ζi = zi } if αi (t) �= (1− t) |zi |, i = 1, 2. Now,
note that (1− t) |zi | < ri − t |zi |, since|zi | < ri . Furthermore, the conditions
αi (t) ≤ ri − t |zi | andαi (t) > (1− t) |zi | are both satisfied fort = 1 andt = 0.
It thus suffices to take functionsαi (t) satisfying

(1− t) |zi | < αi (t) ≤ ri − t |zi |, αi (0)= ri , αi (1)= εi .

It remains to see thatDt does not meet{ζ | ζ1 = ζ2 = 0} for any t ∈ [0,1],
for a suitable choice of the pair (α1, α2). But Dt meets{ζ | ζ1 = ζ2 = 0} if we
haveαi (t) = t |zi | for i = 1 and 2. For fixedt , this imposes two conditions on
the pair (α1, α2), andt varies in a segment, so it is clear that this last condition
is not satisfied by a pair of sufficiently general functions. �

Lemma 1.27 gives a differentiable homotopy inD − ({ζ | ζ1 = ζ2 = 0} ∪
{ζ | ζi = zi }) from ∂D to ∂Dε , so we can conclude by Stokes’ formula that
(1.16) holds. Thus theorem 1.25 is proved. �

1.3 The equation∂g
∂z = f

The following theorem will play an essential role in the proof of the local
exactness of the operator∂.

Theorem 1.28Let f be aCk function (for k≥ 1) on an open set ofC. Then,
locally on this open set, there exists aCk function g (for k≥ 1), such that

∂g

∂z
= f. (1.18)

Remark 1.29 Such a function g is defined up to the addition of a holomorphic
function.

Proof As the statement is local, we may assume thatf has compact support,
and thus is defined andCk onC. Now set

g = 1

2iπ

∫
C

f (ζ )

ζ − z
dζ ∧ dζ .

�

Remark 1.30 This is a singular integral. By definition, it is equal to the limit,
asε tends to0, of the integrals

1

2iπ

∫
C−Dε

f (ζ )

ζ − z
dζ ∧ dζ ,



36 1 Holomorphic Functions of Many Variables

where Dε is a disk of radiusε centred at z. It is easy to see that this limit exists
(the function 1

ζ−z is L
1).

Making the change of variableζ ′ = ζ − z, we also have

g(z) = lim
ε→0

gε(z), gε(z) = 1

2iπ

∫
Cε

f (ζ ′ + z)

ζ ′ dζ ′ ∧ dζ ′,

where

Cε = C − D′
ε,

andD′
ε is a disk of radiusε centred at 0. The convergence of thegε whenε

tends to 0 is uniform inz. Moreover, we can differentiateunder the integral
sign the (non-singular) integral defininggε

∂gε

∂z
= 1

2iπ

∫
Cε

∂ f (ζ ′ + z)

∂z

dζ ′ ∧ dζ ′

ζ ′ .

As ∂ f (ζ ′+z)
∂z is Ck−1, with k− 1 ≥ 0, the functions∂gε

∂z convergeuniformly, and
we conclude thatg is at leastC1 and satisfies

∂g

∂z
= 1

2iπ

∫
C

∂ f (ζ ′ + z)

∂z

dζ ′ ∧ dζ ′

ζ ′ .

By induction onk, the same argument actually shows thatg is Ck. Thus, it
remains to show the equality∂g

∂z = f . Again making the change of variable
ζ = ζ ′ + z, we have

∂g

∂z
(z) = lim

ε→0

1

2iπ

∫
C−Dε

∂ f

∂ζ
(ζ )

dζ ∧ dζ

ζ − z
. (1.19)

Now, we have the equality onC − Dε

∂ f

∂ζ
(ζ )

dζ ∧ dζ

ζ − z
= −d

(
f
dζ

ζ − z

)
;

indeed, for a differentiable functionφ(ζ ) we know thatdφ = ∂φ

∂ζ
dζ + ∂φ

∂ζ
dζ ,

and thus

d(φdζ ) = −∂φ

∂ζ
dζ ∧ dζ .

Stokes’ formula thus gives

1

2iπ

∫
C−Dε

∂ f

∂ζ
(ζ )

dζ ∧ dζ

ζ − z
= 1

2iπ

∫
∂Dε

f (ζ )
dζ

ζ − z
. (1.20)



Exercises 37

Using lemma 1.14 and the equalities (1.19), (1.20) we have thus proved the
equality (1.18).

Exercises

1. Letφ : U → V be a holomorphic map from an open subset ofC
n to an open

subset ofCn. Show that the set

R= {x ∈ U | dφx is not an isomorphism}
is defined inU by exactly one holomorphic equation.
This set is called the ramification divisor ofφ, when it is different fromU .

2. Let f be a holomorphic function defined over an open subsetU of C
n. We

assume thatf does not vanish outside the set

{z= (z1, . . . , zn) ∈ U | z1 = z2 = 0}.
Show thatf does not vanish at any point ofU .

3. Let f be a meromorphic function defined on an open subsetU of C. This
means thatf is locally the quotient of two holomorphic functions.
(a) Show that for any compact subsetK ⊂ U , the number of zeros or poles
of f in K is finite.
(b) Let x ∈ U . Show that there exists an integerkx ∈ Z such thatf can be
written as (z − x)kxφ in a neighbourhood ofx, with φ holomorphic and
invertible (that is non-zero).
The divisor of f is defined as the locally finite sum∑

x∈U
kxx.

(c) Letx ∈ U andD ⊂ U be a disk centred inx, such thatx is the only pole
or zero of f in D. Show that

kx =
∫

∂D

1

2iπ

d f

f
.


